Thursday, 14 December 2017

الانتقال من المتوسط - التنبؤات سبيل المثال


أور-نوتس عبارة عن سلسلة من الملاحظات التمهيدية حول الموضوعات التي تقع تحت عنوان واسع من مجال بحوث العمليات أو أنها كانت تستخدم أصلا من قبل لي في تمهيدية أو بالطبع أعطي في كلية إمبريال وهي متاحة الآن للاستخدام من قبل أي طالب و والمعلمين المهتمين في أو تخضع للشروط التالية. القائمة الكاملة للموضوعات المتوفرة في أور-نوتس يمكن العثور عليها هنا. مثال فوريكاستينغ. فوركاستينغ المثال 1996 أوغ الامتحان. الطلب على المنتج في كل من الأشهر الخمسة الماضية هو مبين أدناه. استخدم المتوسط ​​المتحرك لمدة شهرين لتوليد توقعات للطلب في الشهر 6. تطبيق التمهيد الأسي مع ثابت التمهيد من 0 9 لتوليد توقعات للطلب على الطلب في الشهر 6. أي من هذين التنبؤين تفضل ولماذا. ويعطى المتوسط ​​المتحرك لمدة شهرين للأشهر من سنتين إلى خمس سنوات. التوقعات للشهر السادس هي مجرد المتوسط ​​المتحرك للشهر قبل ذلك أي المتوسط ​​المتحرك للشهر 5 م 5 2350. تطبيق التمدد الأسي مع التمهيد ثابت من 0 9 نحصل. كما قبل توقعات لشهر ستة هو مجرد متوسط ​​للشهر 5 M 5 2386.لقارن بين توقعات اثنين نحسب متوسط ​​الانحراف التربيعية مسد إذا فعلنا ذلك نجد أنه بالنسبة للمتوسط ​​المتحرك. مسد 15 - 19 18 - 23 21 - 24 3 16 67. وبالنسبة للمتوسط ​​الملمس أضعافا مع ثابت تمهيد من 0 9. مسد 13 - 17 16 60 - 19 18 76 - 23 22 58 - 24 4 10 44. أوفيرال ثم نحن نرى أن تمهيد الأسي يبدو أن تعطي أفضل توقعات شهر واحد قبل كما أن لديها مسد أقل وبالتالي نحن نفضل توقعات 2386 التي تم إنتاجها من قبل التمهيد الأسي. تمهيد المثال 1994 امتحان أوغ. ويبين الجدول أدناه الطلب على جديد بعد الحلاقة في متجر لكل من الأشهر ال 7 الماضية. حساب المتوسط ​​المتحرك لمدة شهرين لمدة شهرين إلى سبعة ماذا سيكون توقعاتك للطلب في الشهر الثامن. تطبيق التمهيد الأسي مع ثابت تجانس 0 1 لاستخلاص توقعات ل الطلب في الشهر ثمانية. وهو من اثنين من التوقعات عن الشهر الثامن تفعل يو u تفضل ولماذا. ويعتقد صاحب متجر أن العملاء يتحولون إلى هذا الجديد بعد البيع من ماركات أخرى ناقش كيف قد نموذج هذا السلوك التبديل وتشير البيانات التي سوف تحتاج إلى تأكيد ما إذا كان هذا التحول يحدث أم لا. الشهرين تتحرك متوسط ​​لشهرين إلى سبعة تعطى من قبل. التوقعات عن الشهر الثامن هو مجرد المتوسط ​​المتحرك للشهر قبل ذلك أي المتوسط ​​المتحرك لشهر 7 م 7 46. تطبيق التجانس الأسي مع ثابت تمهيد من 0 1 نحصل. أ قبل التوقعات لشهر الثامن هو مجرد المتوسط ​​للشهر 7 M 7 31 11 31 كما أننا لا يمكن أن يكون الطلب كسور. لإجراء مقارنة بين اثنين من توقعات نحسب متوسط ​​الانحراف التربيعية مسد إذا فعلنا ذلك نجد أن للمتوسط ​​المتحرك. للمتوسط ​​السلس المتسارع مع ثابت التمهيد من 0 1. وعموما فإننا نرى أن المتوسط ​​المتحرك لمدة شهرين ويبدو أن تعطي أفضل توقعات شهر واحد كما أن لديها مسد أقل وبالتالي نحن نفضل توقعات س و 46 التي تم إنتاجها من قبل المتوسط ​​المتحرك لمدة شهرين. لتحديد التحول سنحتاج إلى استخدام نموذج عملية ماركوف، حيث الدول العلامات التجارية، ونحن بحاجة إلى معلومات الحالة الأولية واحتمالات تبديل العملاء من المسوحات ونحن بحاجة إلى تشغيل النموذج على البيانات التاريخية لمعرفة ما إذا كان لدينا تناسب بين النموذج والسلوكيات التاريخية. مثال فوريكاجينغ 1992 امتحان أوغ. ويبين الجدول أدناه الطلب على علامة تجارية معينة من الحلاقة في متجر لكل من الأشهر التسعة الماضية. حساب ثلاثة أشهر تتحرك متوسط ​​لأشهر ثلاثة إلى تسعة ماذا سيكون توقعاتك للطلب في الشهر العاشر. تطبيق التمهيد الأسي مع ثابت تجانس 0 3 لاستخلاص توقعات للطلب في الشهر العاشر. وهو من اثنين من التوقعات لشهر عشرة هل تفضل ولماذا. المتوسط ​​المتحرك لمدة ثلاثة أشهر للأشهر 3 إلى 9 يعطى من قبل. التوقعات لشهر 10 هو مجرد المتوسط ​​المتحرك للشهر قبل ذلك أي المتوسط ​​المتحرك للشهر 9 م 9 20 33.Hence كما لا يمكننا أن يكون طلب كسور توقعات لشهر 10. 20. تطبيق التمهيد الأسي مع ثابت تمهيد من 0 3 نحصل. كما قبل توقعات لشهر 10 هو مجرد متوسط ​​للشهر 9 M 9 18 57 19 كما أننا لا يمكن أن يكون الطلب كسور. ل مقارنة التنبؤين نحسب متوسط ​​الانحراف التربيعي مسد إذا فعلنا ذلك نجد أنه بالنسبة للمتوسط ​​المتحرك. وبالنسبة للمتوسط ​​السلس الأسي مع ثابت التمهيد من 0 3. أوفيرال ثم نرى أن المتوسط ​​المتحرك ثلاثة أشهر ويبدو أن تعطي أفضل التوقعات قبل شهر واحد كما أن لديها مسد أقل وبالتالي نحن نفضل توقعات 20 التي تم إنتاجها من قبل المتوسط ​​المتحرك لمدة ثلاثة أشهر. مثال عام 1991 امتحان أوغ. ويبين الجدول أدناه الطلب على علامة تجارية معينة من جهاز الفاكس في متجر في كل من الأشهر الاثنى عشر الماضية. حساب المتوسط ​​المتحرك لمدة أربعة أشهر لأشهر 4-12 ما سيكون توقعاتك للطلب في الشهر 13.Apply التمهيد الأسي مع ثابت تمهيد من 0 2 إلى ديري في توقعات للطلب في الشهر 13. أي من التنبؤين لشهر 13 هل تفضل ولماذا. ما العوامل الأخرى، لا تعتبر في الحسابات المذكورة أعلاه، قد تؤثر على الطلب على جهاز الفاكس في الشهر 13.The أربعة أشهر تتحرك متوسط ​​الاشهر من 4 الى 12 مقدم بالمطار 4 23 19 15 12 4 17 25 م 5 27 23 19 15 4 21 م 6 30 27 23 19 4 24 75 م 7 32 30 27 23 4 28 م 8 33 32 30 27 4 30 5 m 9 37 33 32 30 4 33 m 10 41 37 33 32 4 35 75 m 11 49 41 37 33 4 40 m 12 58 49 41 37 4 46 25- إن توقعات الشهر 13 هي فقط المتوسط ​​المتحرك ل شهر قبل ذلك أي المتوسط ​​المتحرك لشهر 12 م 12 46 25.Hence كما أننا لا يمكن أن يكون الطلب كسور توقعات لشهر 13 هو 46. تطبيق التمهيد الأسي مع ثابت تمهيد من 0 2 نحصل. كما قبل التوقعات للشهر 13 هو مجرد المتوسط ​​لشهر 12 M 12 38 618 39 حيث لا يمكننا أن يكون الطلب كسور. لإجراء مقارنة بين اثنين من التوقعات نحسب متوسط ​​الانحراف التربيعية مسد إذا فعلنا ذلك نجد أنه بالنسبة للمتوسط ​​المتحرك . وبالنسبة للمتوسط ​​السلس المتسارع مع ثابت التمهيد من 0 2. وعموما فإننا نرى أن المتوسط ​​المتحرك لمدة أربعة أشهر ويبدو أن تعطي أفضل التوقعات شهر واحد كما أن لديها مسد أقل وبالتالي نحن نفضل توقعات 46 التي تم التي تنتجها المتوسط ​​المتحرك لمدة أربعة أشهر. طلب أساسي. تغييرات الأسعار، كل من هذه العلامة التجارية وغيرها من العلامات التجارية. الوضع الاقتصادي العام. تكنولوجيا جديدة. مثال عام 1989 امتحان أوغ. ويبين الجدول أدناه الطلب على ماركة معينة من فرن الميكروويف في قسم مخزن في كل من الأشهر الاثنى عشر الماضية. حساب المتوسط ​​المتحرك لمدة ستة أشهر عن كل شهر ما سيكون توقعاتك للطلب في الشهر 13.Apply التمهيد الأسي مع ثابت تمهيد من 0 7 لاستخلاص توقعات للطلب في الشهر 13 . أي من التنبؤين لشهر 13 هل تفضل ولماذا. الآن لا يمكننا حساب المتوسط ​​المتحرك لمدة ستة أشهر حتى يكون لدينا على الأقل 6 ملاحظات - أي يمكننا فقط حساب هذا المتوسط ​​من الشهر 6 فصاعدا هنك اودينا 6 34 32 30 29 31 27 6 30 50 7 7 35 34 34 30 30 31 32 32 32 36 34 34 35 36 34 32 30 6 34 00.m 10 39 37 35 36 34 32 6 35 50.m 11 40 39 37 35 36 34 6 36 83.m 12 42 40 39 37 35 36 6 38 17- إن توقعات الشهر 13 هي فقط المتوسط ​​المتحرك ل شهر قبل ذلك أي المتوسط ​​المتحرك لشهر 12 م 12 38 17.Hence كما أننا لا يمكن أن يكون الطلب كسور التوقعات لشهر 13 هو 38.Apping التمهيد الأسي مع ثابت تمهيد من 0 7 نحصل. المتوسط ​​المتحرك - ما. بريكينغ أسفل المتوسط ​​المتحرك - MA. As على سبيل المثال سما، والنظر في الأمن مع أسعار الإغلاق التالية على مدى 15 days. Week 1 5 أيام 20، 22، 24، 25، 23.Week 2 5 أيام 26، 28، 26، 29، 27. الأسبوع 3 5 أيام 28 و 30 و 27 و 29 و 28. أما المتوسط ​​المتحرك ل 10 أيام فسيقوم متوسط ​​أسعار الإغلاق خلال الأيام العشرة الأولى كنقطة البيانات الأولى نقطة البيانات التالية ستسقط السعر الأقدم، وتضيف السعر في اليوم 11 واتخاذ المتوسط، وهلم جرا كما هو مبين أدناه. كما لاحظنا في وقت سابق، ماغ يتأخر العمل السعر الحالي بيك أوس أنها تستند إلى أسعار الماضية أطول فترة زمنية ل ما، كلما تأخر وبالتالي فإن ما 200 يوم سيكون لديها درجة أكبر بكثير من تأخر من ما لمدة 20 يوما ما لأنه يحتوي على أسعار لل 200 يوما الماضية و طول ما لاستخدام يعتمد على أهداف التداول، مع أقصر ماس تستخدم للتداول على المدى القصير وطويلة الأجل أكثر ملاءمة للمستثمرين على المدى الطويل ويتبع على نطاق واسع ما لمدة 200 يوم من قبل المستثمرين والتجار، مع فواصل أعلاه و أقل من هذا المتوسط ​​المتحرك يعتبر إشارات تجارية هامة. أما أيضا نقل إشارات التداول الهامة من تلقاء نفسها، أو عندما اثنين من المتوسطات عبر أكثر ارتفاع ما يشير إلى أن الأمن في الاتجاه الصعودي في حين يشير انخفاض ما يشير إلى أنه في اتجاه هبوطي وبالمثل ، يتم تأكيد الزخم التصاعدي مع كروس صعودي الذي يحدث عندما يعبر ما على المدى القصير ما فوق فوق المدى الطويل ما يؤكد الزخم الهبوطي مع كروس أوفر الهابط، والذي يحدث عندما يعبر ما على المدى القصير ما تحت MA. Moving على المدى الطويل معدل ونماذج التمهيد الأسي. كخطوة أولى في التحرك خارج النماذج المتوسطة، نماذج المشي العشوائي، ونماذج الاتجاه الخطي، يمكن استنباط أنماط واتجاهات غير طبيعية باستخدام نموذج متحرك أو تمهيد. الافتراض الأساسي وراء نماذج المتوسط ​​والتجانس هو أن سلسلة زمنية ثابتة محليا بمتوسط ​​متغير ببطء وبالتالي فإننا نأخذ متوسطا محليا متحركا لتقدير القيمة الحالية للمتوسط ​​ومن ثم استخدامها كمؤشر للمستقبل القريب ويمكن اعتبار هذا بمثابة حل وسط بين النموذج المتوسط ​​و نموذج المشي العشوائي دون الانجراف ويمكن استخدام نفس الاستراتيجية لتقدير واستقراء الاتجاه المحلي وعادة ما يطلق على المتوسط ​​المتحرك نسخة ممسحة من السلسلة الأصلية لأن المتوسط ​​على المدى القصير له تأثير على التخلص من المطبات في سلسلة الأصلي من خلال ضبط درجة تمهيد عرض المتوسط ​​المتحرك، يمكننا أن نأمل في ضرب نوع من التوازن الأمثل بين أداء متوسط ​​وعشوائية وال k أبسط نوع من نموذج المتوسط ​​هو. Simple المتوسط ​​المتحرك المرجح على قدم المساواة. التنبؤ بقيمة Y في الوقت t 1 التي تتم في وقت t يساوي المتوسط ​​البسيط من الملاحظات م الأخيرة. هنا وفي أماكن أخرى سأستخدم الرمز Y-هات للوقوف على توقعات للسلسلة الزمنية Y التي تم إجراؤها في أقرب موعد ممكن من قبل نموذج معين ويتركز هذا المتوسط ​​في الفترة t 1 1، مما يعني أن تقدير فإن المتوسط ​​المحلي سيميل إلى التخلف عن القيمة الحقيقية للمتوسط ​​المحلي بحوالي m 1 2 وبالتالي فإننا نقول أن متوسط ​​عمر البيانات في المتوسط ​​المتحرك البسيط هو m 1 2 بالنسبة إلى الفترة التي يتم فيها حساب التوقعات هذا هو مقدار الوقت الذي من شأنه أن التنبؤات تميل إلى تخلف نقاط تحول في البيانات على سبيل المثال، إذا كنت متوسط ​​القيم 5 الماضية، فإن التوقعات ستكون حوالي 3 فترات في وقت متأخر من الاستجابة لنقاط تحول لاحظ أنه إذا م 1، متوسط ​​نموذج المتوسط ​​المتحرك المتوسط ​​البسيط يساوي نموذج المشي العشوائي بدون نمو إذا كانت m كبيرة جدا مقارنة بطول فترة التقدير، فإن نموذج سما يعادل النموذج المتوسط ​​كما هو الحال مع أي معلمة لنموذج التنبؤ، لضبط قيمة كي n للحصول على أفضل ملاءمة للبيانات، أي أصغر أخطاء التنبؤ في المتوسط. هنا هو مثال لسلسلة التي يبدو أن تظهر تقلبات عشوائية حول متوسط ​​ببطء متغير أولا، دعونا نحاول لتناسب ذلك مع المشي العشوائي نموذج، وهو ما يعادل متوسط ​​متحرك بسيط من 1 term. The نموذج المشي العشوائي يستجيب بسرعة كبيرة للتغيرات في هذه السلسلة، ولكن في ذلك يفعل ذلك يختار الكثير من الضوضاء في البيانات تقلبات عشوائية، فضلا عن إشارة المحلية يعني إذا حاولنا بدلا من ذلك متوسط ​​متحرك بسيط من 5 مصطلحات، نحصل على مجموعة أكثر سلاسة من التوقعات. المتوسط ​​المتحرك البسيط لمدة 5 سنوات ينتج أخطاء أقل بكثير من نموذج المشي العشوائي في هذه الحالة متوسط ​​عمر البيانات في هذا التنبؤ هو 3 5 1 2، حتى أنه يميل إلى التخلف عن نقاط التحول بنحو ثلاث فترات على سبيل المثال، يبدو أن الانكماش قد حدث في الفترة 21، ولكن التوقعات لا تتحول حتى عدة فترات في وقت لاحق. لاحظ أن المدى الطويل، والتنبؤات طويلة الأجل من وزارة الدفاع سما إل هي خط أفقي مستقيم، تماما كما في نموذج المشي العشوائي وهكذا، يفترض نموذج سما أنه لا يوجد اتجاه في البيانات ومع ذلك، في حين أن التوقعات من نموذج المشي العشوائي هي ببساطة مساوية لقيمة الملاحظة الأخيرة، والتنبؤات من فإن نموذج سما يساوي المتوسط ​​المرجح للقيم الأخيرة. حدود الثقة التي تحسبها ستاتغرافيكس للتنبؤات طويلة الأجل للمتوسط ​​المتحرك البسيط لا تتسع مع زيادة أفق التنبؤ هذا من الواضح أنه ليس صحيحا للأسف، النظرية الإحصائية التي تخبرنا كيف يجب أن تتسع فترات الثقة لهذا النموذج ومع ذلك، ليس من الصعب جدا حساب التقديرات التجريبية لحدود الثقة لتوقعات الأفق الأطول على سبيل المثال، يمكنك إعداد جدول بيانات فيه نموذج سما سوف تستخدم للتنبؤ بخطوتين إلى الأمام و 3 خطوات إلى الأمام وما إلى ذلك ضمن عينة البيانات التاريخية. يمكنك بعد ذلك حساب الانحرافات المعيارية للعينة في كل توقعات h أوريزون، ومن ثم بناء فترات الثقة للتنبؤات الأطول أجلا عن طريق جمع وطرح مضاعفات الانحراف المعياري المناسب. إذا حاولنا متوسط ​​متحرك بسيط لمدة 9 سنوات، نحصل على توقعات أكثر سلاسة وأكثر تأثيرا متخلفا. الآن 5 فترات 9 1 2 إذا أخذنا متوسط ​​متحرك لمدة 19 عاما، فإن متوسط ​​العمر يزداد إلى 10.لاحظ أن التوقعات في الواقع تتخلف الآن عن نقاط التحول بنحو 10 فترات. كما أن كمية التجانس هي الأفضل لهذه السلسلة في ما يلي جدول يقارن إحصاءات الخطأ الخاصة بهم، بما في ذلك أيضا متوسط ​​3 فترات. نموذج C، المتوسط ​​المتحرك لمدة 5 سنوات، ينتج أدنى قيمة ل رمز بهامش صغير على متوسطات المدى 3 و 9، إحصائياتهم الأخرى متطابقة تقريبا لذلك، من بين نماذج مع إحصاءات الخطأ مشابهة جدا، يمكننا أن نختار ما إذا كنا نفضل أكثر قليلا من الاستجابة أو أكثر قليلا نعومة في التوقعات العودة إلى أعلى الصفحة. الألوان s الأسي بسيط تمهيد أضعافا مضاعفة أضعافا مضاعفة متوسط ​​المتوسط ​​المتحرك البسيط الموضح أعلاه يحتوي على الخاصية غير المرغوب فيها التي يتعامل معها ملاحظات k الأخيرة بالتساوي وبشكل كامل يتجاهل جميع الملاحظات السابقة بشكل حدسي، يجب أن يتم خصم البيانات السابقة بطريقة أكثر تدرجية - على سبيل المثال، والحصول على أكثر من ذلك بقليل من الوزن الثاني من أحدث، والثاني الأكثر حداثة يجب الحصول على وزن أكثر قليلا من 3 أحدث، وهلم جرا بسيطة الأسي تمهيد نموذج سيس ينجز هذا. لاحظ يدل على ثابت تمهيد عدد بين 0 و 1 طريقة واحدة لكتابة النموذج هو تحديد سلسلة L التي تمثل المستوى الحالي أي القيمة المتوسطة المحلية للسلسلة كما يقدر من البيانات حتى الوقت الحاضر يتم حساب قيمة L في الوقت t بشكل متكرر من قيمته السابقة مثل هذا. وهكذا، فإن القيمة الملساء الحالية هي الاستكمال الداخلي بين القيمة الملساء السابقة والمراقبة الحالية، حيث تسيطر على القرب من قيمة محرف إلى أكثر إعادة سينت المراقبة التوقعات للفترة القادمة هي ببساطة قيمة ممهدة الحالية. على العكس من ذلك، يمكننا التعبير عن التوقعات القادمة مباشرة من حيث التوقعات السابقة والملاحظات السابقة، في أي من الإصدارات المكافئة التالية في النسخة الأولى، والتنبؤ هو الاستيفاء بين التوقعات السابقة والملاحظة السابقة. في النسخة الثانية، يتم الحصول على التوقعات القادمة عن طريق ضبط التوقعات السابقة في اتجاه الخطأ السابق عن طريق كمية كسور. is الخطأ المحرز في الوقت t في النسخة الثالثة، والتوقعات هي أي المتوسط ​​المتحرك المخصوم مع معامل الخصم 1. إن نسخة الاستكمال الداخلي لصيغة التنبؤ هي أبسط الاستخدامات إذا كنت تنفذ النموذج على جدول بيانات يناسبه في خلية واحدة ويحتوي على مراجع خلية تشير إلى التوقعات السابقة، الملاحظة، والخلية حيث يتم تخزين قيمة. ملاحظة أنه إذا 1، نموذج سيس يعادل نموذج المشي المشيح نمو هوت إذا كان نموذج سيس يساوي النموذج المتوسط، على افتراض أن القيمة الملساء الأولى تم تعيينها تساوي متوسط ​​العائد إلى أعلى الصفحة. متوسط ​​عمر البيانات في توقعات التمهيد الأسي البسيط هو 1 نسبي إلى الفترة التي يتم حساب التنبؤ بها ليس من المفترض أن تكون واضحة، ولكن يمكن بسهولة أن تظهر من خلال تقييم سلسلة لانهائية وبالتالي، فإن متوسط ​​التوقعات المتحركة البسيطة يميل إلى التخلف عن نقاط التحول بنحو 1 فترات على سبيل المثال، عند 0 5 الفاصل الزمني هو فترتين عندما يكون 0 2 الفارق الزمني 5 فترات عندما يكون 0 1 الفارق الزمني 10 فواصل وهكذا بالنسبة لعمر متوسط ​​معين أي مقدار الفارق الزمني فإن التنبؤ الأسي البسيط للتلطيف سيس متفوق إلى حد ما على التحرك البسيط متوسط ​​توقعات سما لأنه يضع وزنا أكبر نسبيا على الملاحظة الأخيرة - فهو أكثر استجابة قليلا للتغيرات التي تحدث في الماضي القريب على سبيل المثال، نموذج سما مع 9 شروط ونموذج سيس مع 0 2 على حد سواء لديها متوسط ​​العمر من 5 ل دا تا في توقعاتها، ولكن نموذج سيس يضع وزنا أكبر على القيم 3 الماضية مما يفعل نموذج سما، وفي الوقت نفسه فإنه لا ننسى تماما القيم أكثر من 9 فترات القديمة، كما هو مبين في هذا الرسم البياني. أية ميزة أخرى من فإن نموذج سيس على نموذج سما هو أن نموذج سيس يستخدم معلمة التمهيد التي تتغير باستمرار بحيث يمكن تحسينها بسهولة باستخدام خوارزمية حلالا لتقليل متوسط ​​الخطأ الوسطي وتبين القيمة المثلى لنموذج سيس لهذه السلسلة أن يكون 0 2961، كما هو مبين هنا. متوسط ​​عمر البيانات في هذه التوقعات هو 1 0 2961 3 4 فترات، وهو مماثل للمتوسط ​​المتحرك البسيط لمدة 6. التوقعات على المدى الطويل من نموذج سيس هي خط مستقيم أفقي كما هو الحال في نموذج سما ونموذج المشي العشوائي دون نمو ومع ذلك، لاحظ أن فترات الثقة التي يحسبها ستاتغرافيكس الآن تتباعد بطريقة معقولة المظهر، وأنها هي أضيق بكثير من فترات الثقة للراند أوم نموذج المشي يفترض أن سلسلة يمكن التنبؤ بها إلى حد ما أكثر من نموذج المشي العشوائي. نموذج سيس هو في الواقع حالة خاصة من نموذج أريما حتى نظرية إحصائية نماذج أريما يوفر أساسا سليما لحساب فترات الثقة ل نموذج سيس على وجه الخصوص، نموذج سيس هو نموذج أريما مع اختلاف واحد غير منطقي، وهو مصطلح 1 ما، وليس هناك مصطلح ثابت يعرف باسم أريما 0،1،1 نموذج دون ثابت معامل ما 1 في نموذج أريما يتوافق مع الكمية 1 في نموذج سيس على سبيل المثال، إذا كنت تناسب أريما 0،1،1 نموذج دون ثابت لسلسلة تحليلها هنا، فإن معامل ما 1 المقدرة تبين أن 0 7029، وهو تقريبا تقريبا واحد ناقص 0 2961. ومن الممكن إضافة افتراض اتجاه خطي ثابت غير صفري إلى نموذج سيس للقيام بذلك، ما عليك سوى تحديد نموذج أريما مع اختلاف واحد غير منطقي ومدة ما 1 مع ثابت، أي نموذج أريما 0،1،1 مع ثابت سوف التوقعات على المدى الطويل ثم يكون الاتجاه الذي يساوي الاتجاه المتوسط ​​لوحظ خلال فترة التقدير بأكملها لا يمكنك القيام بذلك جنبا إلى جنب مع التعديل الموسمية، لأن خيارات التعديل الموسمية يتم تعطيل عندما يتم تعيين نوع النموذج إلى أريما ومع ذلك، يمكنك إضافة ثابتة طويلة إلى نموذج بسيط للتجانس الأسي مع أو بدون تعديل موسمية باستخدام خيار تعديل التضخم في إجراء التنبؤ يمكن تقدير معدل النمو المناسب لنسبة التضخم في كل فترة على أنه معامل الانحدار في نموذج اتجاه خطي مجهز بالبيانات في جنبا إلى جنب مع التحول اللوغاريتم الطبيعي، أو أنه يمكن أن تستند إلى معلومات أخرى مستقلة بشأن آفاق النمو على المدى الطويل العودة إلى أعلى الصفحة. الخطية s الخطي أي ضعف الأسي تمهيد. نماذج سما ونماذج سيس تفترض أنه لا يوجد أي اتجاه من أي نوع في البيانات التي عادة ما تكون موافق أو على الأقل ليست سيئة جدا ل 1-خطوة قبل التوقعات عندما تكون البيانات نوي نسبيا ويمكن تعديلها لدمج اتجاه خطي ثابت كما هو مبين أعلاه ماذا عن الاتجاهات قصيرة الأجل إذا كانت سلسلة يعرض معدل نمو متفاوت أو نمط دوري الذي يبرز بوضوح ضد الضوضاء، وإذا كان هناك حاجة إلى توقعات أكثر من 1 فترة المقبلة، ثم تقدير الاتجاه المحلي قد يكون أيضا قضية يمكن تعميم نموذج التمهيد الأسي بسيط للحصول على خطية الأسية تمهيد نموذج ليس الذي يحسب التقديرات المحلية من كل من مستوى والاتجاه. أبسط الاتجاه متغيرة الوقت النموذج هو نموذج تمهيد الأسي الخطي براون، والذي يستخدم اثنين من سلسلة سلسة مختلفة التي تتمحور في نقاط مختلفة في الوقت المحدد ويستند صيغة التنبؤ على استقراء خط من خلال المركزين وهناك نسخة أكثر تطورا من هذا النموذج، هولت s، هو نوقشت أدناه. يمكن التعبير عن شكل جبري من براون s الخطي الأسي تمهيد نموذج، مثل ذلك من نموذج تمهيد الأسي بسيط، في عدد من مختلف ولكن ه الأشكال المتكافئة عادة ما يعبر عن النموذج القياسي لهذا النموذج على النحو التالي تدل S تدل على سلسلة سلسة منفرد تم الحصول عليها عن طريق تطبيق تمهيد الأسي بسيط لسلسلة Y وهذا هو، وتعطى قيمة S في الفترة t من قبل. أذكر أنه في ظل تمهيد الأسي بسيط، وهذا سيكون التنبؤ ل Y في الفترة ر 1 ثم اسمحوا S تدل على سلسلة سلسة تم الحصول عليها عن طريق تطبيق تمهيد الأسي بسيط باستخدام نفسه لسلسلة S. Finally، والتوقعات ل يك تك لأي k 1. ويعطي هذا العائد e 1 0 أي غش قليلا، والسماح للتنبؤ الأول يساوي الملاحظة الأولى الفعلية، و e 2 Y 2 Y 1 وبعد ذلك يتم توليد التنبؤات باستعمال المعادلة أعلاه ينتج هذا القيم المجهزة نفسها كما الصيغة التي تستند إلى S و S إذا تم بدء هذه الأخيرة باستخدام S 1 S 1 Y 1 يستخدم هذا الإصدار من النموذج في الصفحة التالية التي توضح مجموعة من التجانس الأسي مع التعديل الموسمي. الخطي S الخطي الأسي Smoothing. Brown s يحسب التقديرات المحلية من المستوى والاتجاه من خلال تمهيد البيانات الأخيرة، ولكن حقيقة أن يفعل ذلك مع معلمة تمهيد واحد يضع قيدا على أنماط البيانات التي هي قادرة على تناسب المستوى والاتجاه لا يسمح لها أن تختلف في معدلات مستقلة هولت s ليس نموذج يتناول هذه المسألة من خلال تضمين اثنين من ثوابت تمهيد، واحدة لمستوى واحد للاتجاه في أي وقت t، كما هو الحال في نموذج براون s، وهناك تقدير L ر من المستوى المحلي وتقدير T t للاتجاه المحلي هنا يتم حسابها بشكل متكرر من قيمة Y الملاحظة في الوقت t والتقديرات السابقة لمستوى واتجاه المعادلتين اللتين تنطبقان على تمهيد أسي لها بشكل منفصل. إذا كان المستوى المقدر والاتجاه في الوقت t-1 هما T t 1 و T t-1 على التوالي، فإن التنبؤات Y t التي كان من الممكن أن تكون قد أجريت في الوقت t-1 تساوي L t-1 T t-1 عندما يلاحظ القيمة الفعلية، يتم حساب المستوى بشكل متكرر عن طريق الاستكمال الداخلي بين Y t والتنبؤ به L t-1 T t-1 باستخدام الأوزان و 1. ويمكن تفسير التغير في المستوى المقدر وهو L t L 1 على أنه قياس صاخب ل الاتجاه في الوقت t يتم حساب التقدير المحدث للاتجاه بشكل متكرر عن طريق الاستكمال الداخلي بين L t L t 1 والتقدير السابق للاتجاه T t-1 باستخدام أوزان و 1. إن تفسير ثابت تجانس الاتجاه يشبه ثابت ثابت التمهيد. النماذج ذات القيم الصغيرة تفترض تغير الاتجاه فقط ببطء شديد مع مرور الوقت، في حين أن النماذج ذات الحجم الأكبر تفترض أنها تتغير بسرعة أكبر ويعتقد نموذج مع كبير أن المستقبل البعيد غير مؤكد جدا، لأن الأخطاء في تقدير الاتجاه تصبح مهمة جدا عند التنبؤ أكثر من فترة واحدة قبل العودة إلى أعلى من ثوابت التجانس ويمكن تقديرها بالطريقة المعتادة من خلال تقليل متوسط ​​الخطأ المئوي للتنبؤات ذات الخطوة الأولى عندما يتم ذلك في ستاترافيكس، تشير التقديرات إلى أن 03048 و 0 008 القيمة الصغيرة جدا من يعني أن النموذج يفترض تغير طفيف جدا في الاتجاه من فترة إلى أخرى، وذلك أساسا هذا النموذج هو محاولة لتقدير الاتجاه على المدى الطويل قياسا على فكرة متوسط ​​عمر البيانات المستخدمة في تقدير t هو المستوى المحلي للسلسلة، متوسط ​​عمر البيانات المستخدمة في تقدير الاتجاه المحلي يتناسب مع 1، وإن لم يكن يساوي بالضبط في هذه الحالة التي تبين أن يكون 1 0 006 125 هذا هو إس عدد دقيق جدا حيث أن دقة تقدير إيسن t حقا 3 المنازل العشرية، ولكن من نفس الترتيب العام من حجم حجم العينة من 100، لذلك هذا النموذج هو المتوسط ​​على مدى الكثير جدا من التاريخ في تقدير الاتجاه مؤامرة التوقعات ويبين الشكل أدناه أن نموذج ليس يقدر اتجاها محليا أكبر قليلا في نهاية السلسلة من الاتجاه الثابت المقدر في نموذج الاتجاه سيس، كما أن القيمة المقدرة تكاد تكون مطابقة للاتجاه الذي يتم الحصول عليه من خلال تركيب نموذج سيس مع الاتجاه أو بدونه ، لذلك هذا هو تقريبا نفس النموذج. الآن، هل هذه تبدو وكأنها توقعات معقولة لنموذج من المفترض أن يكون تقدير الاتجاه المحلي إذا كنت مقلة العين هذه المؤامرة، يبدو كما لو أن الاتجاه المحلي قد تحول إلى أسفل في نهاية سلسلة و في حدث وقد تم تقدير المعلمات من هذا النموذج عن طريق تقليل الخطأ التربيعي من 1-خطوة إلى الأمام التنبؤات، وليس التنبؤات على المدى الطويل، وفي هذه الحالة الاتجاه لا تجعل الكثير من الفرق إذا كان كل ما كنت تبحث في 1 - step قبل الأخطاء، كنت لا ترى الصورة أكبر من الاتجاهات على القول 10 أو 20 فترات من أجل الحصول على هذا النموذج أكثر في تناغم مع استقراء العين مقلة العين من البيانات، يمكننا ضبط ثابت الاتجاه تجانس يدويا بحيث يستخدم خط أساس أقصر لتقدير الاتجاه على سبيل المثال، إذا اخترنا تعيين 0 1، فإن متوسط ​​عمر البيانات المستخدمة في تقدير الاتجاه المحلي هو 10 فترات، مما يعني أننا نحسب متوسط ​​الاتجاه خلال الفترات العشرين الأخيرة أو نحو ذلك هنا s ما يبدو مؤامرة توقعات إذا وضعنا 0 1 مع الحفاظ على 0 3 وهذا يبدو بديهية معقولة لهذه السلسلة، على الرغم من أنه من المحتمل أن خطورة لاستقراء هذا الاتجاه أي أكثر من 10 فترات في المستقبل. ماذا عن إرور ستاتس هنا مقارنة نموذجية f أو النموذجين المبينين أعلاه فضلا عن ثلاثة نماذج سيس تبلغ القيمة المثلى لنموذج سيس حوالي 0 3، ولكن يتم الحصول على نتائج مماثلة مع استجابة أكثر قليلا أو أقل، على التوالي مع 0 5 و 0 2. A هولت إكس خطي تجانس مع ألفا 0 3048 وبيتا 0 008. B هولت خ الخطية تجانس مع ألفا 0 3 وبيتا 0 1. C تمهيد الأسي بسيطة مع ألفا 0 5. D تمهيد الأسي بسيط مع ألفا 0 3. E تمهيد الأسي بسيط مع ألفا 0 2 . احصائيات هي متطابقة تقريبا، لذلك نحن حقا يمكن أن تجعل ر الاختيار على أساس 1-خطوة قبل توقعات الأخطاء داخل عينة البيانات علينا أن نراجع مرة أخرى على اعتبارات أخرى إذا كنا نعتقد بقوة أنه من المنطقي أن قاعدة الحالية تقدير الاتجاه على ما حدث على مدى ال 20 فترة الماضية أو نحو ذلك، يمكننا أن نجعل حالة لنموذج ليس مع 0 3 و 0 1 إذا أردنا أن نكون ملحدين حول ما إذا كان هناك اتجاه محلي، ثم واحدة من نماذج سيس قد يكون من الأسهل أن يفسر، وسوف يعطي أيضا المزيد من ميدل التنبؤات على الطريق على مدى 5 أو 10 فترات القادمة العودة إلى أعلى الصفحة. أي نوع من الاستقراء الاتجاه هو أفضل الأفقي أو الخطي تشير الأدلة التجريبية أنه إذا كانت البيانات قد تم تعديلها إذا لزم الأمر للتضخم، ثم قد يكون من غير الحكمة استقراء الاتجاهات الخطية قصيرة الأجل بعيدا جدا في الاتجاهات المستقبلية قد تتراجع اليوم بوضوح في المستقبل بسبب أسباب مختلفة مثل تقادم المنتج وزيادة المنافسة والانكماش الدوري أو التحولات في صناعة لهذا السبب، الأسي بسيط فإن التنعيم غالبا ما يؤدي إلى خروج عينة أفضل مما يمكن توقعه على خلاف ذلك، على الرغم من استقراء الاتجاه الأفقي الساذج. وغالبا ما تستخدم تعديلات الاتجاه المعاكسة لنموذج تمهيد الأسي الخطي في الممارسة العملية لإدخال ملاحظة المحافظة على توقعات اتجاهها الاتجاه المعاكسة يمكن تنفيذ نموذج ليس كحالة خاصة من نموذج أريما، على وجه الخصوص، نموذج أريما 1،1،2.ومن الممكن لحساب فترات الثقة أرو والتنبؤات الطويلة الأجل التي تنتجها نماذج التمهيد الأسي من خلال اعتبارها حالات خاصة لنماذج أريما حذار ليس كل البرامج بحساب فترات الثقة لهذه النماذج بشكل صحيح عرض فترات الثقة يعتمد على i خطأ رمز النموذج، من تمهيد بسيطة أو خطية إي قيمة s من ثابت التمهيد ق و الرابع عدد الفترات المقبلة كنت التنبؤ بشكل عام، والفواصل انتشرت بشكل أسرع كما يحصل أكبر في نموذج سيس وانتشرت بشكل أسرع بكثير عندما الخطية بدلا من بسيطة تمهيد يتم مناقشة هذا الموضوع أكثر في قسم نماذج أريما من الملاحظات العودة إلى أعلى الصفحة.

No comments:

Post a Comment